
EECS101 Chatbot: Fine-tuning LLaMA2 on
EdStem Question and Answer Data using LoRA

EECS 182: Deep Learning Final Project, UC Berkeley, Prof. Anant Sahai

David Babazadeh Giuseppe Perona Sonika Vuyyuru

Abstract—Our hypothesis is that it is feasible to fine-tune a
Large Language Model (LLM) to generate answers to questions
specifically related to EECS 101 concepts. The fine-tuning process
is anticipated to result in a language model capable of formulating
coherent and contextually relevant responses to questions that are
typically answered in the EECS 101 EdStem page. Furthermore,
we expect more accurate results on a model that is pre-fine-tuned
on a general Q&A dataset.

Another one of our hypotheses is that there are optimal
lora-rank values in the LoRA hyperparameter range that yield
optimal performance for our specific task. Finding a lower rank
alternative is expected to enhance the computational efficiency
and allow us to spend more computation on training time to
hopefully get better results. For our experiment, we test lora-
rank values (1, 4, 16, 32) on 50 data points and 3 epochs (without
allocating extra epochs to lower rank trials) to see when the
effectiveness drops off.

The third hypothesis is that if we pre-fine-tune on the
StackExchange-QA dataset before fine tuning on the EECS 101
dataset, then we can get even better results since our specialized
dataset is small, and doing QA questions first might ease the
model into the flow of Ed style questions.

Our results showed that we were able to successfully fine-
tune the LLaMA model to provide responses specific to EECS
101 at Berkeley. However, even after our different approaches to
fine-tuning, we found the responses to often have inaccurate and
and logical errors when compared to the un-fine-tuned LLaMA
model. We attribute this to being potentially due to forgetting
during fine-tuning, although LoRA is known to mitigate this
issue.

Index Terms—finetuning, LoRA, chatbot

I. INTRODUCTION

State-of-the-art large language models aren’t designed to
answer questions within specific small colloquia–we want
to explore the possibility of fine-tuning a popular LLM,
LLaMA-2 [1] for a local class forum on a low com-
putational budget. Specifically, we’ll be answering ques-
tions from our Electrical Engineering and Computer Sci-
ence (EE/CS) Department’s EECS 101 EdStem (Ed) forum
(https://edstem.org/us/courses/23247/discussion/) and explor-
ing the capability of the Parameter Efficient Fine-Tuning
(PEFT) method called Low-Rank Adaption (LoRA) [2]. If
our chatbot produces decent answers, we can give students
quick, automated answers on advising questions which can
save time for the staff, and stress for the students, or at least
give a quick reply before someone can give a better reply.
This would hopefully be impactful for the UC Berkeley EECS
Budget Crisis which impedes the learning of students.

A more general goal we have is to give insight to aid
the process of fine-tuning with LoRA on a low budget for
other question-answer fine-tuning projects. We will look into
closer-to-optimal hyperparameters (LoRA-r, described later),
how many question-answer pairs might be sufficient, and if
pre-fine-tuning on a larger question-answer dataset from Stack
Exchange (SE) could produce better results for anyone looking
into fine-tuning on a custom question-answer (QA).

II. METHODS

A. Dataset

a) H4 Stack Exchange Preferences Dataset: The
HuggingFaceH4/stack-exchange-preferences (SE Dataset) [3]
consists of Stack Exchange questions with at least two an-
swers. The dataset consists of 10.8M examples and takes
up over 22 GB, and the questions come from 343 different
Stack Exchanges including Stack Overflow and Math Stack
Exchange. Thus, because of memory constraints, we did not
train on the entire dataset. Instead, we ran experiments, which
will be explained in the Experiments section, to determine the
appropriate number of training examples to use.

The training examples consist of raw HTML code scraped
from stackexchange.com. This means that several HTML
formatting tokens are included, such as paragraph markers and
hyperlinks. However, we want our model to output English
text. Thus, we preprocessed the questions and answers by
rendering the HTML with BeautifulSoup’s HTML renderer,
then copied the generated text.

More preprocessing was necessary, as each question pro-
vided comes with several provided answers. For simplicity
of training, we chose to use only the first answer for each
question.

b) EdStem Dataset: The first step of this project was to
systematically gather and process question-and-answer pairs
from the Edstem platform, aiming to create a dataset for
subsequent analysis. The primary objectives were to copy
and paste these interactions into CSV files, accommodating
scenarios where questions had multiple answers or where
additional information was provided through replies.

For questions with multiple answers, each distinct answer
was treated as a separate data point to ensure granularity in the
dataset. In instances where answers included replies containing
either complementary or disagreeing information, a principled
approach was employed. Complementary information was



concatenated to the original answer, enriching the dataset,
while instances of disagreeing information led to the creation
of new data points to accurately represent diverse perspectives.

For each individual datapoint, we started by getting the
title of the post to be the start of the text data point. Then,
we concatenated the body of the post. Finally, we added the
appropriate answers, as described above.

The final step was to format the data in the required format
to feed into Llama 2. This included placing the appropriate
start tokens and separators between the question and answer
portions, in this format: “ < s >[INST] Question [/INST]
Answer < /s >”. In total, we created 201 data points in this
format.

Originally, we wanted to try to web scrape the Edstem page
to get many data points. However, we ended up doing this
manual process. If we see that we need more data points later
on in the process, we may need to revisit and do more research
on the web scraping process.

We split up our EdStem dataset into training, validation,
and test data with a 90-5-5 split, using the validation set for
our hyperparameter sweeping and test data for final model
evaluation.

B. Base Model

For this project, we have selected the Llama-2-7b, a state-
of-the-art language model, as our foundational tool [1]. This
model is distinguished by its robust architecture, comprising 7
billion parameters, making it exceptionally adept at processing
and generating natural language. In addition, we use the
Hugging Face framework for a user-friendly API to interface
with the model.

A critical aspect of our computational framework is the
incorporation of the LoRA (Latent Low-Rank Adaptation)
methodology. Utilizing LoRA allowed us to enhance the
computational efficiency of the Llama-2-7b model with limited
compute resources.

C. Fine-tuning Approach

We used Low Rank Adaptation (LoRA) to fine-tune our
model. LoRA is known to provide good results even on limited
training data, an issue we had on our Ed Dataset, as we had to
collect it by hand. Furthermore, LoRA is computationally light
when compared to other fine-tuning methods, using 10,000
fewer parameters and 3 times less GPU RAM than a full fine-
tune with Adam on GPT-3 [2].

LoRA works by passing SGD updates through a new matrix
product AB for each weight matrix W ∈ Rn×m, where A ∈
Rn×r and B ∈ Rr×m, and r << d, where the result of the
layer is now W+AB. This forces AB to have a much smaller
rank than W , and thus a much smaller number of weights to
train.

D. Experiments

We designed three experiments to explore different aspects
of our problem and to find the best fine-tuning strategy for our
model. Specifically, we wanted to explore the optimal LoRA

hyperparameters, we wanted to explore if and by how much
increasing the number of EdStem training data points helped,
and we wanted to explore if and by how much pretraining on
a more general Q and A style dataset, like a Stack Exchange
Dataset, helped.

For all of our experiments, we used the AdamW optimizer
and a learning rate of 2e-4.

1) Hyperparameter Sweep Across LoRA Rank r
The LoRA hyperparameters were systematically varied,
and the models were rerun to assess their impact on
performance. During all of these runs, we held the
number of EdStem training points used constant, per-
forming fine-tuning with 200 datapoints. Performance
was measured using the evaluation metrics described
later in this paper, along with qualitative analysis of the
responses.
The LoRA r values we tested were 1, 4, 16, and
32. After our hyperparameter search, we chose an r
value of 16. We did find better evaluation results for
r = 1, however, we chose r = 16 because we saw
qualitatively better results from our validation set prompt
responses with the higher r value. Our results for this
hyperparameter sweep can be seen in Figures 1 and 2.
These results make intuitive sense, as the model should
have been able to capture more complex behavior over
the limited Ed Training phase.
Furthermore, we found that the value of r had little
effect on the training loss. In Figures 3-6, we see that
the loss curves for the training on the Ed Dataset look
almost identical across r values. This further motivated
our choice of 16 over 1 as the LoRA rank value, as it
serves as more evidence that increasing r to a higher
value will not hurt model performance.

2) Adjusting number of EdStem training data points
In this experiment, we wanted to see if increasing the
number of EdStem training points used to finetune the
model had a significant effect on the model performance.
Specifically, this type of experiment will help us see if
it is worthwhile to build a larger dataset for any future
training. We were hoping to see if there was a point
of diminishing return in terms of performance improve-
ment at different number of data points. Furthermore,
depending on the results, we could see if getting more
datapoints would really be helpful, and if that could be
incorporated in future training given more compute.

3) Pre-finetuning on Stack Exchange Dataset
We used the SE Dataset to pre-fine tune our model to
address our limited Ed dataset. We hypothesized that
pre-fine tuning on a similar context would help model
performance. Therefore, we pre-fine-tuned with 2500
examples from the SE Dataset.

E. Model Evaluation

We attempted to assess our model by evaluating how
“good” the model’s responses were compared to the EdStem
responses. After researching many different options, such as



perplexity score and even human evaluation, we landed on two
metrics:

a) Recall-Oriented Understudy for Gisting Evaluation
(ROUGE): This metric measures the similarity between a
candidate text and reference text by comparing the number
of overlapping n-grams (successive token sequences) [3].

• Rouge1: ratio of 1-grams that are shared
• Rouge2: ratio of 2-grams that are shared
• RougeL: accounts for the longest common subsequence

of n-grams
b) BERT: BERTScore leverages the pre-trained contex-

tual embeddings from BERT and matches words in candidate
and reference sentences by cosine similarity. This method
demonstrates a significant correlation with human evaluations,
both at the sentence and system levels. Moreover, BERTScore
computes precision, recall, and F1 measure, which can be
useful for evaluating different language generation tasks.

F. Our Models

This paper discusses and compares a selection of models
outlined here:

• Un-fine-tuned LLaMA This is the LLaMA-2-7b-chat-hf
model available on HuggingFace that all of our models
use as a base model.

• [50, 100, 200] Ed fine-tuned LLaMA These models,
trained on variable numbers of EdStem prompts were
used to do the hyperparameter sweep over the LLaMA
rank.

• [500, 2500] SE, 200 Ed fine-tuned LLaMA These
models were trained on a larger set of Stack Exchange
examples, and trained on the full Ed training set, and
evaluated on the full Ed test set. These, in addition to
the Un-fine-tuned LLaMA control were used to test the
effectiveness of the pre-fine-tuning procedure. We often
omit the number of EdStem examples these models were
trained on because it does not vary.

III. RESULTS

A. Experiment 1: Hyperparameter Sweep Across LoRA Rank
r

Figures 1 & 2 are charts depicting our model performance
across different values of LoRA r. We evaluated the model
fine-tuned on 200 EdStem points with each hyperparameter
using the BERT and ROUGE performance metrics.

One observation from Figures 1 & 2 is that the ROUGE
scores are generally constant across rank were as the BERT
scores seem more opinionated. This suggests that ROUGE
might be a bad metric for our task. For any case, there’s
always the possibility that rank is less important than we
think for our task, but related works seem to believe rank
is a significant hyperparameter. The BERT scores suggest that
higher ranks are actually working against our goal. Later, we’ll
see that un-fine-tuned LLaMA performs better in our human
assessments. The reason why we see better performance with
lower ranks is likely because having a higher rank gives the

Fig. 1. LoRA Rank vs. ROUGE scores

Fig. 2. LoRA Rank vs. BERT scores

LoRA module more room to distort results from un-fine-tuned
LLaMA or more room to forget. It’s possible that we simply
needed to train for longer to see the fruit of LoRA, but we
were compute constrained and we wouldn’t have been able to
run the experiments, regardless we see the loss converging in
Figures 3 through 6.

Despite our original procedure to find ideal hyperparameters
before proceeding with other experiments, we decided it would
be most informative to continue using relatively higher ranks
to explore how LoRA operates in the other experiments, rather
than experimenting with a model that uses as little fine-tuning
as possible.

Figures 3 through 6 are the loss graphs from training the
model with different LoRA r hyperparameter values. Note that
the loss curves for all different LoRA ranks look very similar.
This could be due to the fact that we did not shuffle the training
data.



Fig. 3. LoRA Rank = 1 Loss

Fig. 4. LoRA Rank = 4 Loss

B. Experiment 2: Adjusting number of EdStem training data
points

In Figures 7 and 8 we show the results of the ROUGE and
BERT metrics on models fine-tuned on different numbers of
EdStem training points. Out of the tested values, we saw the
best performance across metrics on the model trained on 200
data points, which was the largest number of data points. This
result makes sense since our data were so limited. It is unlikely

Fig. 5. LoRA Rank = 16 Loss

Fig. 6. LoRA Rank = 32 Loss

that the model was able to fully train all the parameters it has
on the limited dataset. As such, it seems like it could benefit
from more datapoints, and we would have to continue to test
with more data points to reveal whether the model could be
optimized further. These results show that it would in fact be
worth it to continue to train with larger numbers of EdStem
data points to see its effects on performance.

The cross-metric dip at 100 training points is also of interest.
This could point to an initial forgetting phenomenon which is
not overcome by improved domain knowledge that comes with
further training.

Fig. 7. ROUGE scores vs Number of Ed Training Points

C. Experiment 3: Pre-finetuning on Stack Exchange Dataset

TABLE I
EVALUATION METRICS FOR UN-FINE-TUNED LLAMA

rouge1 0.1245145307
rouge2 0.01634005691
rougeL 0.07904992992
rougeLSum 0.0975774247
bertPrecision 0.6810488224
bertRecall 0.731363818
bertF1 0.70439125



Fig. 8. BERT scores vs Number of Ed Training Points

Fig. 9. Training Loss with 50 Ed Training Points

Fig. 10. Training Loss with 100 Ed Training Points

TABLE II
EVALUATION METRICS FOR PRE-FINE-TUNED AND FINE-TUNED LLAMA

rouge1 0.1420730171
rouge2 0.02713517158
rougeL 0.09315772787
rougeLSum 0.1164268572
bertPrecision 0.6958273381
bertRecall 0.7295427084
bertF1 0.7116111994

Fig. 11. Training Loss with 200 Ed Training Points

Fig. 12. ROUGE Metrics Graph: un-fine-tuned vs. Ed tuned Only

Figures 14 and 15 show a comparison of performance metric
values for the two different versions of the model being tested
in this experiment, that is the un-fine-tuned LLaMA model and
the pre-fine-tuned and fine-tuned model. The pre-fine-tuned
and fine-tuned models are pre-fine-tuned on different numbers
of SE data, and then further fine-tuned on the fixed full set of
200 EdStem datapoints.

As shown, the BERT score metrics are pretty similar

Fig. 13. BERT Metrics Graph: un-fine-tuned vs. Ed tuned Only



Fig. 14. ROUGE Metrics Graph: un-fine-tuned vs SE + Ed tuned

Fig. 15. BERT Metrics Graph: un-fine-tuned vs SE + Ed tuned

between the un-fine-tuned model and the pre-fine-tuned and
fine-tuned model. However, we see a slight increase in the
ROUGE scores for the model with the pre-fine-tuning on SE
data and fine-tuning on EdStem data. In our discussion section,
we provide a critique of the ROUGE score metric, and how the
un-fine-tuned LLaMA model may have actually still provided
“qualitatively” better responses.

Another thing we explored in this experiment is the number
of SE data points that we pre-finetune on. We also ran evalua-
tions on a model trained on 500 SE data points. However, we
saw incredibly minute differences in the ROUGE and BERT
metrics between the model pre-fine-tuned on 500 vs. 2500 SE
data points, on the order of 1e-4. As such, we omitted the
charts comparing these two models and use the model trained
on 2500 SE data points as our final fully pre-trained and fine-
tuned model for evaluation. Some sample responses from the
500 SE data point pre-fine-tuned & fine-tuned model can be
found in the appendix for qualitative observation.

IV. DISCUSSION

Our project aimed to assess the feasibility of fine-tuning a
large language model specifically to answer EECS 101-related
questions. Our results suggest that this goal is attainable, albeit
with certain limitations and considerations. In this section, we

Fig. 16. Pre-fine-tuned Training Loss Curve

will provide some more analysis on our observations and also
present some avenues for further exploration.

By our human assessment, un-fine-tuned LLaMA performs
better than our Ed fine-tuned model (without SE), but lacks
the tone and sometimes gives information about other uni-
versities. The fine-tuned models hallucinate more, appear to
have less relevant knowledge, and are more likely to make
illogical statements. However, we noticed that it seemed to
pick up well on the tone of the responses, and with providing
information that is school specific to Berkeley, like picking up
course numbers like 61A, 61B, and 61C. A better approach
to this problem might instead be in-context learning where
we help solve the problem of LLaMA answering to other
universities. Un-fine-tuned LLaMA might also perform worse
and be less knowledgeable for more niche and less publicized
communities.

A reason for the more accurate and logical responses from
the un-fine-tuned LLaMA model could be due to forgetting
during fine tuning. LoRA is known to mitigate the phe-
nomenon due to the relatively small number of weights that it
trains, but nonetheless, this could still be an issue. Toneva et al.
mention that forgetting can be more common when the model
is trained to perform a different domain of task, especially
when there is a lack of structure in the training examples [5].
Notably, we train on our Ed Dataset for several epochs, and
this dataset is fairly heterogeneous, with questions ranging
from course selection advice to course expansion questions
and basic administrative issues. Such little consistency across
so few datapoints could cause confusion in the model in the
way that Toneva et al. describe. Another factor that could
be driving forgetting is overtraining on the stack exchange
dataset. The loss values seem to plateau long before we cease
training

Another potential avenue for future improvements along the
same lines of finetuning a chatbot would be to use a EdStem
page that is more content oriented, like perhaps the 61A
EdStem page. Having data that is more content oriented, more
objective, and less up to the user’s personal opinion could help
potentially eliminate any inconsistencies in the bot’s responses.

Finally, as shown in our results, the ROUGE metric may



not have been the best metric for measuring the quality of
a response. Although our pre-trained and fine-trained model,
as well as the 200 EdStem only fine-tuned model, had higher
ROUGE scores, it qualitatively had more inconsistencies and
logical errors. As such, future work should look into using
a human metric to score responses that looks at other things
that are important in a response, such as accuracy, helpfulness,
logicalness, and more.

A. Analysis of Sample Results
We have included some sample results from our models

(un-fine-tuned LLaMA, 500 SE fine-tuned LLaMA, and 2500
SE fine-tuned LLaMA)

From these different responses, we can see that our 2500
SE fine-tuned model learns some specifcs about Berkeley,
not confusing responses with other schools like Wisconsin
or Stanford, which can be seen in the un-fine-tuned model’s
response to Question 1. Also notable is that the un-fine-tuned
LLaMA model also recommends pretty Berkeley-specific web-
sites, like www.berkeleytime.edu. This was pretty surpriseing,
but could be due to the fact that these types of responses
may have appeared on websites like Reddit that may have
been a part of the LLaMA training set. Overall, based on
qualitative analysis of our test set responses across different
models, we concluded that although the un-fine-tuned LLaMA
model provides less Berkeley specific information, it seems to
provide more generally logical results, such as responding with
some form of email sign up (although on the UW-Madison
website) to question 3 regarding the EECS mailing list. On
the otherhand, the fully pre-fine-tuned and fine-tuned model
simply responds that mailing list is not publically accessible.

Commonalities in responses from the pre-fine-tuned and
fine-tuned model to other questions included things like cre-
ating triangles of difficulties of classes that are not logically
possible: ex.

Furthermore, the un-fine-tuned LLaMA model provides
qualitatively more coherent and logical answers. The fine-
tuned model, on the other hand captures the tone of Ed
responses well, saying for example course a is harder than
course b, and course b is harder than course c, but that course
c is harder than course a.

B. Limitations and Future Work
The limited size of the EdStem dataset was a pretty signif-

icant constraint on our findings. The results of experiment 2
show us that we have not yet found a strong plateau in the
performance of the model with 200 Edstem data points, so
future work can potentially look into further increasing the
size of this training dataset.

Another limitation of our work was resource limitations.
Due to our limited access to compute, we could not extensively
explore the full potential of LoRA fine-tuning or experiment
with much larger datasets. Future work with increased compu-
tation resources could provide more insights into the optimal
fine-tuning strategies by continuing to look at optimizing other
parameters like learning rate, alpha, number of training points,
and more.

REFERENCES

[1] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie,
Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,
Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang
Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, Thomas Scialom. Llama 2: Open Foundation and Fine-
Tuned Chat Models. arXiv:2307.09288

[2] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, Weizhu Chen. LoRA: Low-Rank Adaptation
of Large Language Models. arXiv:2106.09685

[3] Lambert, Nathan and Tunstall, Lewis and Rajani, Nazneen and
Thrush, Tristan. HuggingFace H4 Stack Exchange Preference Dataset.
2023. https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-
preferences.

[4] Chin-Yew Lin. ROUGE: A Package for Automatic Evaluation of Sum-
maries. https://aclanthology.org/W04-1013.pdf.

[5] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes,
Adam Trischler, Yoshua Bengio, Geoffrey J. Gordon. An Empirical
Study of Example Forgetting during Deep Neural Network Learning.
arXiv:1812.05159.

V. APPENDIX

Our code for the project can be found at
https://github.com/davidbabazadeh/eecs101bot.

A. Sample Responses - Un-fine-tuned LLaMA

1) how to get into cs280 as an undergrad? i didn’t get to
take cs180, but have cs189 and cs182 under my belt.
is the prerequisite the same as previous years that I’ll
need cs180 in order to take it? Thanks!
CS280 is a graduate-level computer science course at
Stanford University, and it is not typically open to
undergraduate students who have not completed the
appropriate prerequisites.
The prerequisites for CS280 typically include:
* CS180: Introduction to Computer Science * CS189:
Computer Systems * CS182: Algorithms and Data
Structures
If you have already completed CS189 and CS182, but
did not take CS180, you may still be eligible to take
CS280, depending on the specific requirements of the
course and the instructor’s discretion. However, it is best
to check with the course instructor or the department to
confirm their specific prerequisites and any additional
requirements.
In general, it is important to have a strong foundation in
computer science fundamentals, including programming,
data structures, algorithms, and computer architecture,
before moving on to more advanced topics like computer
systems and software engineering.
If you are unable to take CS280 due to missing the
prerequisites, you may want to consider other computer



science courses at Stanford that are more accessible
to undergraduate students. For example, you could try
taking CS

2) Best courses to pair up with 189? Am a senior, I’ve
already taken 127, 170, 149, 186, 180. Taking 189 in
my last sem, was considering 140, but don’t know if
it’s worth. Love probability (70’s my fav class at berk),
so now doubt 140 will be fun, but want to prioritise
technical knowledge over fun. What’s best to pair up
with 189?
Great! You’ve already taken some fantastic courses, and
now you’re looking to pair up with 189. Based on your
interest in probability and the courses you’ve already
taken, here are some suggestions for courses that could
complement 189 well:
1. 145: Probability and Statistics for Machine Learning
- This course will give you a deeper understanding of
probability and statistics, which is crucial for machine
learning. You’ll learn how to model and analyze complex
data sets, and how to use probability theory to make
predictions and decisions. 2. 175: Data Structures and
Algorithms - This course will help you understand how
to design and implement efficient algorithms for solving
problems, which is essential for any field that involves
working with data. You’ll learn how to analyze the time
and space complexity of algorithms, and how to choose
the right data structure for the job. 3. 187: Computational
Methods in Probability and Statistics - This course will
give you a

3) How many people get off the cs161 waitlist? I’m trying
to enroll in 161 but the class is almost full. I want to
join the waitlist but I’m worried if I do and I don’t get
off the waitlist, I won’t be able to enroll in what I want
since it would take a spot on my phase 1 enrollment unit
limit. Should I risk it?
It is difficult to predict exactly how many people will
get off the waitlist for CS161, as it depends on various
factors such as the number of available spots, the number
of students who are waitlisted, and the order in which
students are admitted from the waitlist. However, I can
provide some general information that may help you
make an informed decision.
In recent years, the waitlist for CS161 has typically been
quite long, with hundreds of students vying for a limited
number of spots. However, the number of students who
actually get off the waitlist and enroll in the course can
vary significantly from year to year.
In the past, the number of students who got off the
waitlist ranged from around 10-20 students per section,
although it’s not uncommon for some sections to have
zero or only one student admitted from the waitlist. This
means that the chances of getting off the waitlist are
relatively low, but it’s still worth putting yourself on the
list if you’re interested in the course.
It’s important to note that being on the waitlist does not
guarantee that you will

4) mailing list? How can I tell if I’m in the [eecs-ugrads]
mailing list? I’m a CS major junior in L&S. My friend
got some important emails from that mailing list today,
but I didn’t. So I want to double-check if it’s just me
accidentally deleted that email, or because I’m not in
the mailing list.
To check if you are subscribed to the eecs-ugrads
mailing list, you can follow these steps:
1. Log in to your UW-Madison email account. 2. Click
on the ”Settings” or ”Preferences” button in the top right
corner of your inbox. 3. Scroll down to the ”Lists” or
”Subscriptions” section. 4. Look for the ”eecs-ugrads”
list in the list of available mailing lists. 5. If you see the
list, click on the ”Subscribe” or ”Join” button to confirm
your subscription. 6. If you don’t see the list, you may
not be subscribed to it. You can then contact the list
owner or administrator to request subscription.
Alternatively, you can use the following command in the
UW-Madison email client to check if you are subscribed
to the eecs-ugrads list:
‘listinfo eecs-ugrads‘
This command will display information about the eecs-
ugrads list, including whether you are subscribed to it.

B. 500 Stack Exchange pre-fine-tuned LLaMA & fine-tuned on
200 EdStem data points

1) how to get into cs280 as an undergrad? i didn’t get to
take cs180, but have cs189 and cs182 under my belt.
is the prerequisite the same as previous years that I’ll
need cs180 in order to take it? Thanks!
I understand your frustration, and I’m sorry you didn’t
get the classes you wanted. It’s important to remember
that course capacities are set for a variety of reasons,
including the need to maintain a manageable student-to-
instructor ratio, the availability of course materials and
resources, and the need to balance course offerings with
other demands on faculty and staff time.
That being said, I understand that high demand for
certain courses can make it difficult for students to get
the classes they want. Here are a few things that might
help:
1. Consider taking a different course: If you’re interested
in a particular topic but can’t get the course you want,
consider taking a different course that covers similar
material. Many courses have overlapping topics, and you
might find that a different course is a good substitute.
2. Look for alternative course offerings: Some courses
are offered online or in different formats than traditional
lectures. You might

2) Best courses to pair up with 189? Am a senior, I’ve
already taken 127, 170, 149, 186, 180. Taking 189 in
my last sem, was considering 140, but don’t know if
it’s worth. Love probability (70’s my fav class at berk),
so now doubt 140 will be fun, but want to prioritise
technical knowledge over fun. What’s best to pair up
with 189?



As a senior, you have a good foundation in probability
theory, and you’re looking to expand your technical
knowledge. Here are some courses that pair well with
189:
1. 140: Introduction to Probability Theory (offered every
spring) - This course provides a more rigorous introduc-
tion to probability theory, including random variables,
probability distributions, and stochastic processes. It’s a
natural follow-up to 189, and it will help you deepen
your understanding of probability theory. 2. 144: Statis-
tics (offered every fall) - This course introduces statis-
tical inference, including hypothesis testing, confidence
intervals, and linear regression. It’s a good complement
to 189, as it provides practical applications of probability
theory. 3. 160: Machine Learning (offered every spring)
- This course covers the basics of machine learning,
including linear regression, neural networks, and support
vector machines. It’s a great way to apply probability
theory to

3) How many people get off the cs161 waitlist? I’m trying
to enroll in 161 but the class is almost full. I want to
join the waitlist but I’m worried if I do and I don’t get
off the waitlist, I won’t be able to enroll in what I want
since it would take a spot on my phase 1 enrollment unit
limit. Should I risk it?
I’m just an AI, I don’t have access to real-time infor-
mation, but I can give you an idea of how many people
get off the waitlist for CS 161 based on historical data.
In the past, the number of people who got off the waitlist
for CS 161 has varied from year to year. In the past, the
number of people who got off the waitlist was around
10-15. However, this number can vary depending on the
number of spots available and the number of people on
the waitlist.
It’s important to note that the number of people who get
off the waitlist is not fixed and can change from year
to year. Some years, there may be more spots available,
while in other years, there may be fewer spots available.
It’s also worth noting that the waitlist for CS 161 is not
guaranteed. While some people do get off the waitlist,
others may not. It’s important to have a backup plan and
consider other options if you don’t get off the waitlist.
In summary, while the number of

4) mailing list? How can I tell if I’m in the [eecs-ugrads]
mailing list? I’m a CS major junior in L&S. My friend
got some important emails from that mailing list today,
but I didn’t. So I want to double-check if it’s just me
accidentally deleted that email, or because I’m not in
the mailing list.
I’m sorry, but I don’t have access to the UW mailing
list system. I don’t know what the mailing list is called,
or if you are in it.
The EECS department has a mailing list called eecs-
ugrads. If you want to be added to the list, you can
send an email to the EECS department.
I can tell you that the list is used to send important

emails to students in the EECS department. If you are
in the list, you will get emails from the department about
important events, such as deadlines, job announcements,
and other things that are important to you as a student
in the department.
If you want to double-check if you are in the list,
you can try sending an email to the list. You can
do this by sending an email to the address eecs-
ugrads@lists.cs.wisc.edu. If you are in the list, you
should receive an email back from the list.
If you are not in the list, you can ask the department to
add you to it. They will need to know your name and

C. 2500 Stack Exchange pre-fine-tuned LLaMA & fine-tuned
on 200 EdStem data points

1) how to get into cs280 as an undergrad? i didn’t get to
take cs180, but have cs189 and cs182 under my belt.
is the prerequisite the same as previous years that I’ll
need cs180 in order to take it? Thanks!
Dear [Student Name],
Thank you for reaching out to us about the high demand
for CS courses, particularly CS 168, and the difficulty
you had in enrolling in these classes. We understand the
importance of having access to courses that align with
your academic goals and interests, and we are committed
to finding solutions to accommodate the high demand.
We appreciate your feedback on the maximum class size
for CS 168 and other courses. Our course offerings and
class sizes are designed to balance student demand with
available resources, including lecture halls, instructors,
and equipment. However, we recognize that this balance
can sometimes result in disappointment for students who
are unable to enroll in their preferred courses.
To address this issue, we are exploring several options
to increase capacity and improve access to high-demand
courses, including:
1. Online lectures: We are considering offering online
lectures for some of our most popular courses, including
CS 168

2) Best courses to pair up with 189? Am a senior, I’ve
already taken 127, 170, 149, 186, 180. Taking 189 in
my last sem, was considering 140, but don’t know if
it’s worth. Love probability (70’s my fav class at berk),
so now doubt 140 will be fun, but want to prioritise
technical knowledge over fun. What’s best to pair up
with 189?
I think you’re on the right track. I’d pair up 189 with
140. 140 is a great course for developing programming
skills and is a good complement to 189. The course
focuses on programming in Python, and you’ll learn
about object-oriented programming, data structures, al-
gorithms, and more. The course also covers some math-
ematical concepts, such as probability distributions and
statistical inference, which will help you understand the
concepts in 189. Another course that pairs well with
189 is 170. 170 is an introductory statistics course



that covers probability, statistical inference, and data
analysis. The course is very practical and will help
you understand how to apply statistical concepts in
real-world situations. If you’re interested in machine
learning, you might want to consider 145. 145 covers
the basics of machine learning, including supervised
and unsupervised learning, neural networks, and deep
learning. This course will

3) How many people get off the cs161 waitlist? I’m trying
to enroll in 161 but the class is almost full. I want to
join the waitlist but I’m worried if I do and I don’t get
off the waitlist, I won’t be able to enroll in what I want
since it would take a spot on my phase 1 enrollment unit
limit. Should I risk it?
I have no idea how many people get off the waitlist. I
don’t think you should risk it.
If you want to take a class that is full, you can try to
get on the waitlist, but you should also consider taking a
different class. If you are unable to get into a class you
want to take, you can always try to get into a different
class.
If you are unable to get into a class you want to take,
you can also try to get a spot on the waitlist. If you are
unable to get a spot on the waitlist, you can always try
to get into a different class.
If you are unable to get into a class you want to take,
you can also try to get a spot on the waitlist. If you are
unable to get a spot on the waitlist, you can always try
to get into a different class.
If you are unable to get into a class you want to take,
you can also try to get a spot on the waitlist. If you are
unable to get a spot on the waitlist, you can always try
to get into a different class.
If you are unable to

4) mailing list? How can I tell if I’m in the [eecs-ugrads]
mailing list? I’m a CS major junior in L&S. My friend
got some important emails from that mailing list today,
but I didn’t. So I want to double-check if it’s just me
accidentally deleted that email, or because I’m not in
the mailing list.
I don’t think this is the correct solution. The mailing list
is not publicly accessible, and the command to check if
you are subscri


